Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Bis $\left\{\mu\right.$-6, 6^{\prime}-dimethoxy-2,2'-[propane-1,2-diylbis(iminomethylene)]diphenolato\}bis[aquacopper(II)] dihydrate

Y.-F. Liu, ${ }^{\text {a }}{ }^{*}$ H.-T. Xia, ${ }^{\text {a }}$ Shu-Ping Yang ${ }^{\text {a }}$ and Da-Qi Wang ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang, Jiangsu 222005, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
Correspondence e-mail: liu222005@hhit.edu.cn

Received 3 August 2007
Accepted 8 October 2007
Online 12 January 2008
In the title compound, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the asymmetric unit consists of one half of the $\operatorname{bis}\left\{\mu-6,6^{\prime}-\right.$ dimethoxy-2,2'-[propane-1,2-diylbis(iminomethylene)]diphenolato\}bis[aquacopper(II)] complex and two water molecules. Two $\mathrm{Cu}^{\text {II }}$ centres are bridged through a pair of phenolate groups, resulting in a complex with a centrosymmetric structure, with the centre of inversion at the middle of the $\mathrm{Cu}_{2} \mathrm{O}_{2}$ plane. The Cu atoms are in a slightly distorted squarepyramidal coordination environment $(\tau=0.07)$. The average equatorial $\mathrm{Cu}-\mathrm{O}$ bond length and the axial $\mathrm{Cu}-\mathrm{O}$ bond length are 1.928 (3) and 2.486 (3) \AA, respectively. The $\mathrm{Cu}-$ O (water) bond length is 2.865 (4) \AA, so the compound could be described as having a weakly coordinating water molecule at each $\mathrm{Cu}^{\text {II }}$ ion and two solvent water molecules per dimetallic unit. The $\mathrm{Cu} \cdots \mathrm{Cu}$ distance and $\mathrm{Cu}-\mathrm{O}-\mathrm{Cu}$ angle are 3.0901 (10) \AA and $87.56(10)^{\circ}$, respectively. The molecules are linked into a sheet by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds parallel to the [001] plane.

Comment

Binuclear transition metal complexes have attracted much attention because of their potential applications, for example, as active sites in metalloproteins and enzymes (Elmali et al., 2004) and as new inorganic functional materials showing molecular ferromagnetism (Gupta et al., 2005). Among these binuclear transition metal complexes, $\mathrm{OH}^{-}, \mathrm{RO}^{-}, \mathrm{RCO}_{2}{ }^{-}$, $\mathrm{Cl}^{-}, \mathrm{Br}^{-}$and other groups are often used as bridging ligands (Christou et al., 2000). In particular, magnetostructural correlations in dicopper(II) complexes bridged by pairs of phenoxide or alkoxide groups show that the major factors controlling the intramolecular spin coupling between the metal centres are the bridged $\mathrm{Cu}-\mathrm{O}-\mathrm{Cu}$ angle (Elmali et al., 2004) and other factors, such as the distortion index (τ) of the $\mathrm{Cu}^{\mathrm{II}}$ atoms, which can also affect the spin coupling between the $\mathrm{Cu}^{\text {II }}$ centers of some diphenoxide-bridged dicopper(II)
complexes (Xie et al., 2003). These complexes are able to stabilize the $\mathrm{Cu}_{2} \mathrm{O}_{2}$ core by forming square-pyramidal $\mathrm{CuO}_{2} \mathrm{~N}_{3}$ coordination sites or square-planar $\mathrm{CuO}_{2} \mathrm{~N}_{2}$ coordination sites (Herres et al., 2005). In the light of this, we have synthesized some new ligands with diamino groups (Xia et al., 2006; Xia, Liu, Yang \& Wang, 2007). 6,6'-Dimethoxy-2,2'-[propane-1,2diylbis(iminomethylene)]diphenol $\left(\mathrm{H}_{2} L\right)$ is a versatile ligand that, due to its conformational flexibility, can form a tetradentate chelating mode through its N and O atoms (Liu et al., 2007; Xia, Liu, Wang \& Yang, 2007) or a bridging coordination mode towards many metals, resulting in complexes with different stereochemistries. In this paper, we report the synthesis and structure of the title phenoxide-bridged dicop$\operatorname{per}(\mathrm{II}) \mathrm{H}_{2} L$ complex, (I).

(I)

In compound (I), two $\mathrm{Cu}^{\mathrm{II}}$ atoms are bridged by a pair of phenoxide O atoms, with each $\mathrm{Cu}^{\mathrm{II}}$ atom five-coordinated by two N and three O atoms (Fig. 1). The coordination polyhedron around the $\mathrm{Cu}^{\mathrm{II}}$ atom may be described as squarebased pyramidal. The distortion index τ (Addison et al., 1984) is 0.07 (where $\tau=0$ for square-pyramidal geometry and $\tau=1$ for trigonal-bipyramidal geometry), with an apical $\mathrm{Cu} 1-\mathrm{O} 1 A$ distance of 2.486 (3) \AA. The basal plane is formed by atoms $\mathrm{O} 1, \mathrm{~N} 1, \mathrm{~N} 2$ and O3. Atom Cu1 is shifted by 0.0752 (16) \AA from the basal plane toward apical atom $\mathrm{O} 1 A$.

The distance between water atom O 5 and atom Cu 1 is 2.865 (4) \AA, and atom O5 is situated at the apical point of a pseudo-octahedral geometry, which is similar to what was observed in another diphenoxide-bridged dicopper(II) complex, $\left[\mathrm{Cu}_{2} L\left(\mathrm{~N}_{3}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (L is a macrocyclic ligand; Chattopadhyay et al., 2007). Thus, compound (I) can be described as having a weakly coordinating water molecule at each $\mathrm{Cu}^{\text {II }}$ ion and two solvent water molecules per dimetallic unit.

The two intramolecular basal planes are strictly parallel, with an interplanar spacing of 2.528 (13) Å, corresponding to a plane offset of $1.838 \AA$. The dihedral angles between the basal plane and benzene rings C5-C10 and C13-C18 are 31.10 (16) and $23.37(18)^{\circ}$, respectively, and the dihedral angle between the square $\mathrm{Cu}_{2} \mathrm{O}_{2}$ plane and the basal plane is $87.62(7)^{\circ}$. The $\mathrm{Cu}-\mathrm{N}$ bond lengths range from 1.992 (3) to 2.011 (3) \AA, and the average equatorial $\mathrm{Cu} 1-\mathrm{O} 1$ bond length is 1.928 (3) \AA, whereas the axial $\mathrm{Cu} 1-\mathrm{O} 1 A$ bond length is 2.486 (3) \AA. This axial elongation is a consequence of the Jahn-Teller effect of
copper(II), indicating that the spin-unpaired electron is located in the $d_{x^{2}-y^{2}}$ orbital and that the $d_{z^{2}}$ orbital contains spin-paired electrons. Thus, the magnetic exchange is propagated principally via the $d_{x^{2}-y^{2}}$ orbital of the $\mathrm{Cu}^{\mathrm{II}}$ ions which interacts with the appropriate orbital of the O atoms of the bridging phenoxide groups.

The $\mathrm{Cu} \cdots \mathrm{Cu}$ separation is 3.0901 (10) \AA, consistent with the value of $3.091 \AA$ reported for the diphenoxide-bridged dicopper(II) complex $\left[\mathrm{Cu}_{2} L\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{SO}_{4}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (where L are derivatives of 4 -methyl-2,6-diformylphenol with 1,3 -di-amine-2-propanol; Venegas-Yazigi et al., 2006), but longer than the value of 2.9133 (10) \AA reported for another diphen-oxide-bridged dicopper(II) complex, $\left[\mathrm{Cu}_{2} L\left(\mathrm{~N}_{3}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ (where L are derivatives of 4-methyl-2,6-diformylphenol with ethane-1,2-diamine; Chattopadhyay et al., 2007). The $\mathrm{Cu}-\mathrm{O}-$ Cu bridging angles of $87.56(10)^{\circ}$ are smaller than those of the two diphenoxide-bridged dicopper(II) complexes mentioned above [104.08 and $99.65(15)^{\circ}$, respectively]. It is well known that the strength of antiferromagnetic coupling depends mainly on the $\mathrm{Cu}-\mathrm{O}-\mathrm{Cu}$ bridging angle in dicopper(II) complexes equatorially bridged by a pair of phenoxide O atoms (Thompson et al., 1996). Magnetostructural correlation of such complexes has been reported by Thompson et al. using macrocyclic ligands. They predicted that the antiferromagnetism of such an equatorial-equatorial interaction of tetragonally distorted dicopper(II) complexes should prevail until the $\mathrm{Cu}-\mathrm{O}-\mathrm{Cu}$ angle is as small as 77°. The title compound is an axial-equatorial interaction of tetragonally distorted dicopper(II) complexes, and the $\mathrm{Cu}-\mathrm{O}-\mathrm{Cu}$ angle is much smaller than that found in the systems studied by Thompson et al. $\left(99-105^{\circ}\right)$, but it would still be predicted to be antiferromagnetic in nature.

Figure 1
The molecular structure of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Unlabelled atoms and those labelled with the suffix A are related to labelled atoms by the symmetry code $(1-x,-y, 1-z)$.

Figure 2
The crystal structure of (I), showing the formation of hydrogen-bonded sheets via $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions. For clarity, H atoms not involved in the hydrogen bonding have been omitted. Dashed lines indicate hydrogen bonds. [Symmetry codes: (B) $\frac{1}{2}-x, \frac{1}{2}+y, z ;(C) \frac{1}{2}+x$, $\frac{1}{2}-y, 1-z$.]

In the crystal structure, the molecules of compound (I) are linked into complex sheets by means of six independent $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and one $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Table 2), but the formation of the sheet is readily described in terms of simpler substructure motifs. Atom C 1 in the molecule at $\left(\frac{1}{2}-x, \frac{1}{2}+y, z\right)$ and C 12 in the molecule at $\left(\frac{1}{2}+x\right.$, $\frac{1}{2}-y, 1-z$) act as hydrogen-bond donors to atom O6 in the molecule at (x, y, z) and atom O5 in the molecule at $\left(\frac{1}{2}+x, \frac{1}{2}-y\right.$, $1-z$), respectively. Although the H atoms bonded to the O 5 water molecule could not be determined reliably, it appears from the intermolecular $\mathrm{O} \cdots \mathrm{O}$ distances that atom O 5 at $\left(\frac{1}{2}+x\right.$, $\left.\frac{1}{2}-y, 1-z\right)$ acts as hydrogen-bond donor to atom O6 in the molecule at (x, y, z), with a distance of $2.722(5) \AA$. At the same time, atom O6 in the molecule at (x, y, z) acts as hydrogen-bond donor to atoms $\mathrm{O} 1, \mathrm{O} 2$ and O 3 in the molecule at (x, y, z), so forming a second ring motif, this time of $R_{1}^{2}(9)$ type. The combination of these two motifs then forms a sheet parallel to the [001] plane and generated by the n-glide plane at $y=\frac{1}{2}$ (Fig. 2). There are no direction-specific interactions between adjacent sheets.

Experimental

The ligand was produced according to the literature method of Xia, Liu, Yang \& Wang (2007). For the preparation of complex (I), the ligand $(0.693 \mathrm{~g}, 2 \mathrm{mmol})$ was dissolved in ethanol $(10 \mathrm{ml})$ and an aqueous solution (10 ml) of cupric chloride $(0.341 \mathrm{~g}, 2 \mathrm{mmol})$ was added. The reaction mixture was stirred for 2 h at 323 K . The solution
was then cooled slowly to room temperature and filtered. Green crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution (yield $0.48 \mathrm{~g}, 51 \%$; m.p. $514-516 \mathrm{~K}$). Analysis calculated for $\mathrm{C}_{38} \mathrm{H}_{56} \mathrm{Cu}_{2} \mathrm{~N}_{4} \mathrm{O}_{12}$: C 51.40 , H 6.36, N 6.31%; found: C 51.56, H 6.57, N 6.15\%. IR (KBr disk, $v, \mathrm{~cm}^{-1}$): $3426(w), 3246(m)$, 2932 (w), 1598 (w), 1562 (m), 1482 ($s), 1452$ ($s), 1291$ (m), 1241 (s), $1070(s), 719(m)$; UV-vis $\left[\lambda(\mathrm{nm}), \varepsilon\left(\mathrm{mol}^{-1} \mathrm{~cm}^{-1}\right), \mathrm{CH}_{3} \mathrm{OH}\right]$: 247 (27225), 284 (16575), 334 (1990), 405 (2038), 581 (510).

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$V=4048.7(9) \AA^{3}$
$M_{r}=887.95$
Orthorhombic, Pbca
$a=10.3214$ (16) \AA
$Z=4$
Mo $K \alpha$ radiation
$b=16.474$ (2) \AA
$\mu=1.12 \mathrm{~mm}^{-1}$
$c=23.812$ (2) \AA
$T=298(2) \mathrm{K}$
$0.28 \times 0.21 \times 0.10 \mathrm{~mm}$

Data collection

Siemens SMART 1000 CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.745, T_{\text {max }}=0.897$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
259 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.66 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}$
$S=1.00$
3572 reflections

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 12-\mathrm{H} 12 B \cdots \mathrm{O} 5$	0.97	2.58	$3.338(6)$	135
$\mathrm{C} 1-\mathrm{H} 1 C \cdots \mathrm{O} 6^{\mathrm{ii}}$	0.97	2.56	$3.427(5)$	149
O6-H6A $\cdots \mathrm{O} 3$	$0.90(3)$	$1.87(3)$	$2.723(4)$	$158(5)$
O6-H6B O_{2}	$0.89(3)$	$2.20(3)$	$3.036(5)$	$156(5)$
O6-H6B $\cdots \mathrm{O} 1$	$0.89(3)$	$2.24(5)$	$2.907(4)$	$131(5)$
N2-H2 $\cdots \mathrm{O} 2^{\mathrm{i}}$	0.91	2.20	$3.052(4)$	156
$\mathrm{~N} 1-\mathrm{H} 1 \cdots 4^{\mathrm{i}}$	0.91	2.43	$3.155(5)$	137
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.91	2.30	$3.133(4)$	153

Symmetry codes: (i) $-x+1,-y,-z+1$; (ii) $-x+\frac{1}{2}, y-\frac{1}{2}, z$.
refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors acknowledge the financial support of the Huaihai Institute of Technology Science Foundation and the Department of Chemical Engineering.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: HJ3052). Services for accessing these data are described at the back of the journal.

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Chattopadhyay, T., Banu, K. S., Banerjee, A., Ribas, J., Majee, A., Nethaji, M. \& Das, D. (2007). J. Mol. Struct. 833, 13-22.
Christou, G., Gatteschi, D. N., Hendrickson, D. N. \& Sessoli, R. (2000). MRS Bull. 25, 66-71.
Elmali, A., Zeyrek, C. T. \& Elerman, Y. (2004). J. Mol. Struct. 693, 225-234.
Gupta, N., Gupta, R., Chandra, S. \& Bawa, S. S. (2005). Spectrochim. Acta A, 61, 1175-1180.
Herres, S., Heuwing, A. J., Flörke, U., Schneider, J. \& Henkel, G. (2005). Inorg. Chim. Acta, 385, 1089-1095.
Liu, Y.-F., Xia, H.-T., Wang, D.-Q. \& Yang, S.-P. (2007). Acta Cryst. E63, m484m486.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Thompson, L. K., Mandal, S. K., Tandon, S. S., Bridson, J. N. \& Park, M. K. (1996). Inorg. Chem. 35, 3117-3125.

Venegas-Yazigi, D., Cortés, S., Paredes-García, V., Peña, O., Ibañez, A., Baggio, R. \& Spodine, E. (2006). Polyhedron, 25, 2072-2082.
Xia, H.-T., Liu, Y.-F., Wang, D.-Q. \& Yang, S.-P. (2007). Acta Cryst. E63, m1162-m1164.
Xia, H.-T., Liu, Y.-F., Yang, S.-P. \& Wang, D.-Q. (2006). Acta Cryst. E62, o5864-o5865.
Xia, H.-T., Liu, Y.-F., Yang, S.-P. \& Wang, D.-Q. (2007). Acta Cryst. E63, o239o240.
Xie, Y.-S., Liu, X.-T., Ni, J. \& Liu, Q.-L. (2003). J. Mol. Struct. 655, 279-284.

